Structures of eukaryotic ribonucleotide reductase I define gemcitabine diphosphate binding and subunit assembly.

نویسندگان

  • Hai Xu
  • Catherine Faber
  • Tomoaki Uchiki
  • Joseph Racca
  • Chris Dealwis
چکیده

Ribonucleotide reductase (RNR) catalyzes the conversion of nucleoside diphosphates to deoxynucleoside diphosphates. Crucial for rapidly dividing cells, RNR is a target for cancer therapy. In eukaryotes, RNR comprises a heterooligomer of alpha(2) and beta(2) subunits. Rnr1, the alpha subunit, contains regulatory and catalytic sites; Rnr2, the beta subunit (in yeast, a heterodimer of Rnr2 and Rnr4), houses the diferric-tyrosyl radical crucial for catalysis. Here, we present three x-ray structures of eukaryotic Rnr1 from Saccharomyces cerevisiae: one bound to gemcitabine diphosphate (GemdP), the active metabolite of the mechanism-based chemotherapeutic agent gemcitabine; one with an Rnr2-derived peptide, and one with an Rnr4-derived peptide. Our structures reveal that GemdP binds differently from its analogue, cytidine diphosphate; because of unusual interactions of the geminal fluorines, the ribose and base of GemdP shift substantially, and loop 2, which mediates substrate specificity, adopts different conformations when binding to GemdP and cytidine diphosphate. The Rnr2 and Rnr4 peptides, which block RNR assembly, bind differently from each other but have unique modes of binding not seen in prokaryotic RNR. The Rnr2 peptide adopts a conformation similar to that previously reported from an NMR study for a mouse Rnr2-based peptide. In yeast, the Rnr2 peptide binds at subsites consisting of residues that are highly conserved among yeast, mouse, and human Rnr1s, suggesting that the mode of Rnr1-Rnr2 binding is conserved among eukaryotes. These structures provide new insights into subunit assembly and a framework for structure-based drug design targeting RNR.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structures of eukaryotic ribonucleotide reductase I provide insights into dNTP regulation.

Ribonucleotide reductase catalyzes a crucial step in de novo DNA synthesis and is allosterically controlled by relative levels of dNTPs to maintain a balanced pool of deoxynucleoside triphosphates in the cell. In eukaryotes, the enzyme comprises a heterooligomer of alpha(2) and beta(2) subunits. The alpha subunit, Rnr1, contains catalytic and regulatory sites. Here, we report the only x-ray str...

متن کامل

In vivo induction of resistance to gemcitabine results in increased expression of ribonucleotide reductase subunit M1 as the major determinant.

Gemcitabine is a deoxycytidine (dCyd) analogue with activity against several solid cancers. Gemcitabine is activated by dCyd kinase (dCK) and interferes, as its triphosphate dFdCTP, with tumor growth through incorporation into DNA. Alternatively, the metabolite gemcitabine diphosphate (dFdCDP) can interfere with DNA synthesis and thus tumor growth through inhibition of ribonucleotide reductase....

متن کامل

Increased expression of the large subunit of ribonucleotide reductase is involved in resistance to gemcitabine in human mammary adenocarcinoma cells.

Resistance to cytotoxic nucleoside analogues is a major problem in cancer treatment. The cellular mechanisms involved in this phenomenon have been studied for several years, and some factors have been identified. However, this resistance seems to be multifactorial and more studies are needed to gain better insight into this domain. For this purpose, we developed a gemcitabine-resistant cell lin...

متن کامل

Gemcitabine and carboplatin demonstrate synergistic cytotoxicity in cervical cancer cells by inhibiting DNA synthesis and increasing cell apoptosis

BACKGROUND The present study aims to investigate the subunit expression and enzyme activity of ribonucleotide reductase in cervical cancer patients, and detect the combined effect of the ribonucleotide reductase inhibitor gemcitabine and the chemotherapeutic agent carboplatin on cervical cancer cell lines. METHODS Using quantitative reverse transcription polymerase chain reaction, Western blo...

متن کامل

Enhanced subunit interactions with gemcitabine-5'-diphosphate inhibit ribonucleotide reductases.

Ribonucleotide reductases (RNRs) catalyze the conversion of nucleotides to deoxynucleotides in all organisms. The class I RNRs are composed of two subunits, alpha and beta, with proposed quaternary structures of alpha2beta2, alpha6beta2, or alpha6beta6, depending on the organism. The alpha subunits bind the nucleoside diphosphate substrates and the dNTP/ATP allosteric effectors that govern spec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 103 11  شماره 

صفحات  -

تاریخ انتشار 2006